

ANAEMIA

Department of Pediatrics MIMER Medical College Talegaon Dabhade

Reduction of RBC volume or Hb concentration below normal range

MORPHOLOGICAL CLASSIFICATION

- ☐ Microcytic hypochromic anaemia
- 1. Nutritional iron deficiency anaemia
- Post haemorrhagic
- 2. Ineffective erythropoiesis
- o Thalessemia
- Lead poisoning
- **□** Normocytic normochromic anaemia
- 1. Impaired red cell production
- Pure red cell aplasia
- 2. Haemolysis
- Hereditary spherocytosis
- Sickle cell disease
- Macrocytic anaemia

Nutritional - vitamin b12, folate deficiency

Iron deficiency anaemia

- ☐ Most commom cause of nutritional anaemia
- **□**Sources of iron in diet:-
- -Green leafy veg, pulses, dates/nuts, jaggery
- □Absorption of iron :-
- -meat, liver, kidney, egg yolk, fishferrous salts better absorbed than ferric salts
- -PHOSPHATES, PHYTATES, OXALATES, MILK INHIBIT fe ABSORPTION
- -LACTOSE , VIT C AND ACIDS CYSTEINE, LYSINE ↑ fe ABSORPTION

SITE OF IRON ABSORPTION

From duodenum and upper jejunum

In mucosal cells, iron binds – apoferritin – ferritin

In plasma – iron binds with transferrin

Each molecule of transferrin binds 2 atoms of iron

Total iron binding capacity

NUTRITIONAL ANAEMIAS OF INFANCY

```
    Hb < 11gm% - 6 MNTHS - 6 YRS 40 - 50 %</li>
    < 12 gm% 6 - 12 YRS</li>
    < 12 gm% FEMALE ADULTS</li>
    < 13 gm% MALE ADULTS</li>
    MILD hb > 10gm%
    MODERATE 7-10 gm%
    SEVERE <7 gm%</li>
```

• Substances required for erythropoiesis

Iron

Vit b12

Folic acid

Proteins

Trace elements

IRON DEFICIENCY ANAEMIA

• Interference (absorption) plus

PHYTATES LOW

ph

Polyphenols ascorbic acid

Calcium haeme sources

CLINICAL FEATURES

- Age group: 6month 3 yrs and 11 yrs 17 yrs
- Pallor c/o ccf; cardiomegaly; systolic murmur
- Blue sclera c/o pica -? ↓ resistance to infections
- C/o splenomegaly, koilonychia, tongue papillary atrophy developmental disadvantage
- Behavioural disturbances
- Irritability
- Lack of interest in surroundings
- Scholastic backwardness
- Breath holding spells

AETIOLOGY OF IRON DEFICIENCY ANAEMIA

A. Iron loss

Hookworm infestation

Cow's milk allergy

Dysentery – bacillary and amoebic

Rectal diverticular and polyps

Bleeding disorders

B. **Decreased iron intake**

Faulty feeding practices- consumption of large amounts of milk and carbohydrates only. Less intake of iron rich foods like fish, meat, beetroot, raddish, jaggery,ragi.

C. IMPAIRED IRON ABSORPTION

PICA

ACHLOROHYDRIA

COELIAC DISEASE

D. DECREASED IRON STORES

PRETERMS

LBW

TWINS

E. INCREASED IRON REQUIREMENT

PRETERMS AND LBW

LAB DIAGNOSIS

- Bm haemosiderin↓
- Serm ferritin ↓
- Si ↓
- **Tibc** ↑
- Ts ↓
- **Fep** ↑

Pbs – microcytosis , hypochromia, anisopoikilocytosis

Rdw \uparrow ; mcv \downarrow , mch \downarrow , mchc \downarrow

Thrombocytosis

BM – ERYTHROID HYPERPLASIA, ↓ fe ON STAINING WITH PRUSSIAN BLUE

DIFFERENTIAL DIAGNOSIS

- RESPONSE TO IRON THERAPY 6mg/kg(therapeutical)
- 12-24 hrs replacement of intracellular enzymes, irritability decreases
- 36-48 hrs initial bm response/erythroid hyperplasia
- 48-72 hrs reticulocytosis(peak at 5-7 days)
- \uparrow IN hb (0.3g/dl/day)
- 1-30 MO REPLETION OF STORES

- Parenteral vs oral iron
- Blood transfusion
- Iron preparation with elemental iron
 - Ferrous sulfate (37%) ferrous fumarate (33%)
- Ferrous succinate (23%) ferrous carbonate (26%)
- Ferrous gluconate (12%) ferric ammonium citrate (15%)

FOLIC ACID DEFICIENCY

- <u>Sources</u> –fruits, glv, animal organs(liver/kidney) goats milk to deficient
- Absorption throughout small intestine
- DAILY REQUIREMENT 100μg/day

Increased in pregnancy, rapid growth, infection

Clinical features –

Those of anemia

4-7 month of age

Irritability, chronic diarrhoea, failure to gain weight

Heamorrhages due to thrombocytopenia

LAB DIAGNOSIS

- MACROCYTIC (MCV > 100fl)
- Rectic ↓
- Megaloblasts on pbs- hypersegmented nuclei
- Neutropenia
- Thrombocytopenia
- Arneth index >75% neutrophils have 5 % more nuclear segments.
- Ldh ↑
- Bm- erythroid hyperplasia with megaloblastic changes
- FA LEVEL NORMAL 5 20ng/ml <3 DEFICIENT
- RBC FOLATE LEVELS 150 600 ng/ml OF PACKED CELLS

TREATMENT

- 1-5 mg/day FOR 3-4 WEEKS
- Haematological response within 72 hrs
- Also associated with pregnancy, malabsorption, anticonvulsants, methotrexate, pyrimethamine, trimethoprim.

VITAMIN B12(COBALAMINE) DEFICIENCY

- Sources :- cobalamine in food(mainly of animal origin)
- Absorption: combine with r proteins and if in the acidity of stomach - absorbed in distal ileum via specific receptors
- DAILY REQUIREMENT :- 1-5µg/day(not COMMON IN PEM)
- Clinical features :-

Those of anaemias 9months - 11 yrs

Weakness, irritability, anorexia, glossitis

Neurologic – ataxia, parasthesias, hyporeflexia, clonus

LAB DIAGNOSIS

- Macrocytosis
- Megaloblasts on pbs- hypersegmented neutrophils
- Neutropenia
- Thrombocytopenia
- Ldh ↑
- Moderate elevations of s.BILIRUBIN (2-3mg/dl)
- VIT B12 LEVELS <100pg/ml
- Schilling test

TREATMENT

- 1mg/day IM 2WEEKS
- MAINTENANCE 1mg IM MONTHLY
- Haematologic response in 2-4 days
- Also associated with tc deficiency, malabsorption(receptor defect surgical resection)