HYPERKALEMIA AND HYPOKALEMIA

DR. ANUJA PATIL , ASSISTANT PROFESSOR, MEDICINE DEPARTMENT

INTRODUCTION

- Physiology of Potassium
- Roles of Potassium
- Hyperkalemia
- Hypokalemia

PHYSIOLOGY OF POTASSIUM

- Potassium is a major intracellular cation
- Total body K+ content in a normal adult : 3000- 4000mEq
- 98% Intracellular, 2% in ECF
- Normal homeostatic mechanisms maintain the serum K level within a narrow range (3.5-5.5 mEq/L).
- The intracellular concentration of Potassium is roughly 150 mEq/L, which is maintained by Na⁺/K⁺ ATPase pump.

ROLES OF POTASSIUM

- Electrolyte Balance: maintains fluid balance inside and outside cells
- Nerve Function: helps generate and regulate electrical signals necessary for nerve cell communication
- **Muscle Function**: regulates balance between contraction & relaxation of muscles
- Blood Pressure Regulation: lowers BP by vasodilation
- Acid-Base balance: acts as buffer to maintain an optimal pH range for proper physiological function
- Metabolism & Energy production: involved in various enzymatic reactions. (eg: conversion of glucose into glycogen)

- It's important to note that both low and high potassium levels can have adverse effects on health.
 - Hypokalemia (low potassium levels i.e. <3.5 mEq/L)
 - **Hyperkalemia** (high potassium levels i.e. >5.5 mEq/L) These can disrupt normal physiological processes and require appropriate medical management.

HYPOKALEMIA

Defined as plasma [K^+] <3.5meq/L

Redistribution into cell:

- Acid Base: Metabolic Alkalosis
- Anabolic State
 - Vit B12/Folic acid administration
 - Total Parenteral Nutrition
- Hormonal:
 - Insulin
 - Downstream stimulation of Na⁺/K⁺ ATPase: Theophylline
 - Beta-2 adrenergic agonist
- Others:
 - Pseudohypokalemia
 - Hypothermia

ETIOLOGY

Decreased Intake:

- Starvation
- Clay Ingestion

ETIOLOGY

Increased Loss:

- Non Renal
 - Gastro-intestinal Loss (Diarrhoea)
 - Integumentary Loss (Sweat)
- Renal
 - Diuretics, Osmotic diuretics
 - Increased secretion of K+ : Mineralocorticoid excess
 - Magnesium Toxicity
 - Vomiting, Diabetic Ketoacidosis, Proximal Renal Tubular Acidosis
 - Drugs:
 - Penicillin
 - Dicloxacilin

CLINICAL FEATURES

- Fatigue
- Myalgias
- Muscular weakness or cramps
- Constipation
- Frank paralytic ileus
- In Severe Hypokalemia :
 - Complete paralysis
 - Hypoventilation
 - Rhabdomyolysis

DIAGNOSTIC TESTING

- Urine Potassium level: measured by 24hr urine collection or by multiplying spot urine [K⁺] by total daily urine output. (<15mEq/L suggests appropriate K⁺ conservation)
- Alternatively, **TTKG** (Trans tubular potassium gradient)
 - TTKG= (Urine K x Plasma osm) / (Plasma K x Urine osm)
 - TTKG<2 suggests a non renal source
 - TTKG>4 suggests inappropriate renal potassium excretion.
- A Urine Potassium-to-creatinine ratio of <13 indicates transcellular potassium shift, GI losses, diuretic use or poor dietary intake; if >13, indicates renal potassium wasting.
- Acid-Base status: mostly associated with metabolic alkalosis

ECG CHANGES

- Flattening or Inversion T-wave
- Prominent U-wave
- ST segment depression
- Premature atrial complexes
- Premature ventricular beats
- Prolonged QU interval
- In Severe K⁺ depletion:
 - Prolonged PR interval
 - Decreased voltage
 - Widening of QRS complex

TREATMENT

A total body Potassium deficit of **200-400 mEq** is required to lower the serum potassium levels by 1mEq/L. Hence, correction needs to be targeted to total body deficit.

Oral Therapy

- Oral replacement with KCl (Mainstay of therapy)
- Potassium phosphate (Oral or IV)
- Potassium bicarbonate/citrate (in pt. with concomitant metabolic acidosis)
- DOSE : Oral dose of 40mEq every 4 hrly.

IV Therapy

- IV replacement with KCl (<=40 mEq/L via peripheral veins; 100mEq/L via central line)
- Ideally KCl mixed with NS because dextrose might exacerbate hypokalemia
- Maximal daily dose: 240-400 mEq/day
- Rate of infusion <=20mEq/hour (unless paralysis or malignant ventricular arrhythmia
- Potassium sparing diuretics (Spironolactone, Amiloride, Triamterene, Eplerenone)

HYPERKALEMIA *Defined as plasma* $[K^+] > 5.5meq/L$

Pseudohyperkalemia

- Cellular efflux
 Thrombocytosis
- Hereditary RBC membrane defect

ETIOLOGY

Intra to Extracellular Shift

- Acidosis
- Hyperosmolarity
- Beta-2-adrenergic antagonist
- Digoxin

ETIOLOGY

Inadequate Excretion

- Inhibition of renin-angiotensin-aldosterone axis
 - ACE inhibitors, ARBs, ENaC blocker (Amiloride, Trimethoprim)
- Decreased distal delivery
 - Congestive Heart Failure
 - Volume Depletion
- Hyporeninemic hypoaldosteronism
 - Tubulointerstitial disease (SLE)
 - Diabetic nephropathy
 - Drugs: NSAIDs

- Renal resistance to mineralocorticoid
 - Hereditary: defect in ENaC
- Advanced renal insufficiency (CKD)
- Primary Adrenal insufficiency
 - Autoimmune: Addisons disease
 - Infectious: HIV, TB
 - Drugs: Heparin, LMWH

CLINICAL FEATURES

- Palpitations
- Syncope
- Cardiac Arrhythmogenesis (may lead to sudden cardiac death)
- In severe hyperkalemia
 - Weakness
 - Flaccid paralysis
 - Hypoventilation (if respiratory muscles involved)

DIAGNOSTIC TESTING

- Pseudohyperkalemia should be excluded by rechecking laboratory data
- High Aldosterone levels
 - High renin levels suggest Aldosterone resistance (Pseudohypoaldosteronism)
- Low Aldosterone levels
 - Adrenal disease (Renin levels elevated)
 - Hyporeninemic Hypoaldosteronism (Renin level low) occurs with Type 4 Renal Tubular Acidosis

ECG CHANGES

Serum Potassium (mEq/L)	ECG
5.5-6.5	Tall, peaked T-waves
6.5-7.5	Loss of P-waves
7-8	Widening of QRS complex
8-10	Cardiac arrhythmia, sine wave pattern and ventricular fibrillation/asystole

TREATMENT

Acute Therapy

- Calcium Gluconate 1000mg(10ml) of a 10% infused over 2-3 minute, dose can be repeated if no ECG improvement seen after 5-10 minutes.
- Sodium Bicarbonate: 3 ampoules of NaHCO3 in 1 Liter of 5% Dextrose.
- Beta-2-adrenergic agonist: Albuterol (10-20mg neb. Over 30-60mins)
- **Insulin:** causes Potassium shift into the cell & temporarily lowers the plasma potassium.
 - 10-20 units of regular insulin (with 10/25/50% Dextrose IV)

Long term Therapy

- Administration of Saline in Pt. who appear volume depleted, otherwise Furosemide can be used if renal function is adequate
- **Dialysis** (Patients with renal failure)
- Chronic Therapy
 - Dietary modification to avoid high potassium foods
- Cation exchange resins(promotes excretion of Potassium in GI tract):
 - Sodium Polystyrene Sulphonate (SPS): 25-50gm
 - Zirconium cyclo-silicate
 - Patiromer: 8.4gm mixed with 100ml of water, given daily

