

Local Anaesthetics

Local Anaesthetics

- Introduction
- Susceptibility of nerve fibres
- Classification
- Mechanism of action
- > Effect of pH on LA action

Local Anaesthetics

Prolongation of action by vasoconstrictors
 Pharmacokinetics
 Uses
 Adverse effects
 Drug interactions

Local Anaesthetics (LAs)

reversible loss of sensory perception, especially of pain

block generation and conduction of nerve impulse

CHEMISTRY

- weak bases .
- A hydrophilic secondary or tertiary amine on one side (basic amine side chain) and a lipophilic (aromatic part) on the other are joined by an alkyl chain through an ester or amide linkage.
- Cocaine, procaine, chloroprocaine, tetracaine, benzocaine.

Amide-linked LAs

Longer acting

• bupivacaine, Levo-bupivacaine, ropivacaine, dibucaine

Intermediate acting

• Lignocaine (lidocaine), mepivacaine, prilocaine, articaine

Ester-linked LAs

- Longer acting
- Tetracaine
- Intermediate acting
- Cocaine
- Short acting
- Procaine,
- Chloroprocaine, Benzocaine(mucopain), Proparacaine(proxymetacaine)

Miscellaneous

> Pramocaine
> Dyclocaine
> Oxetacaine (mucain)

Amide Versus Ester

More intense and longer duration > Bind to α_1 acid glycoprotein in plasma Not hydrolysed by plasma esterases > Rarely cause hypersensitivity reactions; > no cross sensitivity with ester LAs Because of their short duration, less intense analgesia and higher risk of hypersensitivity, the ester-linked LAs are rarely used for infiltration or nerve block.

but are still used topically on mucous membranes.

Dosage and Administration

>Anaesthetic procedure > Area to be anaesthetised Vascularity of the tissues \geq Duration of the anaesthesia \geq Individual tolerance Physical condition of the patient > Vasoconstrictor agent

Mechanism of Action:

• inhibiting Sodium influx required for the initiation and conduction of impulses.

Onset and Duration of Anesthesia:

> less than 2 minutes for 2% lignocaine.
 > Duration of nerve block 60 to 120 min
 > average duration ~90 to 180 min for 2% lignocaine with epinephrine 1:200,000

Pharmacokinetics

- >95% metabolized (dealkylated) in the liver mainly by CYP3A4
- > pharmacologically active metabolites monoethylglycinexylidide (MEGX) and
- > then subsequently to the inactive glycine xylidide.
- MEGX has a longer half life than lidocaine, but also is a less potent sodium channel blocker.
- > About 60-80% circulates bound to the protein alpha₁ acid glycoprotein.

Pharmacokinetics

- > elimination half-life of is biphasic and around 90– 120 minutes.
- > may be prolonged in hepatic impairment (average 343 min) or congestive heart failure (average 136 min).
- Renal dysfunction does not affect kinetics but may increase the accumulation of metabolites.
- > acidosis and the use of CNS stimulants and depressants affect the CNS levels of lignocaine
- > excreted in the urine (90% as metabolites and 10% as unchanged drug).

Lignocaine

PRODUCT IDENTIFICATION			FORMULA		
Concentration %	Lignocaine (mg/mL)	Epinephrine (mg/mL)	Methyl Paraben (mg/mL)	Sodium Chloride (mg/mL)	Sodium Metabisulfite (mg/mL)
2% with Epinephrine	20	I:200,000 (5mcg/mL)	I	6	0.5
2% plain	20		I	6	

Precautions

> To minimize intravascular injection, aspiration should be performed.

- If blood is aspirated, the needle must be repositioned.
- >Absence of blood in the syringe does not assure intravascular injection.
- Inject slowly and take care not to exceed the maximum safe dose, especially in children.

Drug interactions

- Propranolol (probably other β blockers also) may reduce metabolism by reducing hepatic blood flow.
- Vasoconstrictor (adrenaline) containing LA should be avoided for patients with IHD, PVD, cardiac arrhythmia, thyrotoxicosis, uncontrolled hypertension, and those receiving β blockers or TCA

In during administration of general anesthetic, since cardiac arrhythmias may occur under such conditions.

Drug interactions

- Haloperodol causes hypotension
- Alcohol needs higher dose

ADR of Lignocaine

Allergic reactions are characterized by cutaneous lesions, urticaria, edema or anaphylaxis reactions.

- Allergic reactions as a result of sensitivity to lidocaine are extremely rare
- The detection of sensitivity by skin testing is of doubtful value.

Toxicity of Lignocaine

Central Nervous System: Restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors,

Cardiovascular System: bradycardia, hypotension, and cardiovascular collapse, which may lead to cardiac arrest.

Management of Emergencies

- The first consideration is prevention, by careful and constant monitoring of cardiovascular and respiratory vital signs
- >the patient's state of consciousness after each local anesthetic injection.
- Resuscitative equipment, oxygen, and other resuscitative drugs should be available for immediate use.
- At the first sign, oxygen should be administered.

Maximum Recommended Dosages

Adult: lidocaine with epinephrine - below 500 mg and should not exceed 7 mg/kg.
 When used without epinephrine -below 300 mg and should not exceed 4.4 mg/kg

Lignocaine 2% Epinephrine 1:80,000

Adrenalin

- Dosage Forms And Strengths
- Adrenalin I mg/mL (I:1000) I mL
- Adults and Children >30 kg: 0.3 to 0.5 mg (0.3 mL to 0.5 mL) I.M.
- maximum of 0.5 mg (0.5 mL) per injection, repeated every 5 to 10 minutes as necessary.
- Children < 30 kg : 0.01 mg/kg (0.01 mL/kg) of maximum of 0.3 mg (0.3 mL)

Adrenaline (epinephrine) dosages chart

Age (years)	Weight (kg)	Vol. adrenaline 1:1000	Adrenaline autoinjector	
<i< th=""><th>5-10</th><th>0.05-0.1 mL</th><th></th></i<>	5-10	0.05-0.1 mL		
I-2	10	0.1 mL	10-20 kg (~1-5yrs)	
2-3	15	0.15 mL	0.15mg (green labelled	
4-6	20	0.2 mL	device)	
7-10	30	0.3 mL	>20kg (~>5yrs)	
10-12	40	0.4 mL	0.3mg (yellow labelled	
>12 and adults*	>50	0.5 mL	device)	

Ropivacaine

- long-acting, pure S-enantiomer , amide local anaesthetic.
- less cardiotoxic than racemic bupivacaine but more than lignocaine.
- adverse event profile similar to that of bupivacaine

Ropivacaine

- Several cases of CNS toxicity have been reported after intravascular administration
- But very less cardiovascular toxicity has been reported .
- The outcome of intravascular administrations is favourable
- preferred because of its reduced CNS and cardio toxic potential

Ropivacaine

- 2 mg/mL-- 10 mL and 20 mL vials,
- 7.5 mg/mL--10 mL and 20 mL vials,
- I0 mg/mL--I0 mL and 20 mL vials,
- Maximum recommended dose 3 mg/kg

- amino-amide group. It is the S-enantiomer of bupivacaine.
- less vasodilation and longer duration as Compared to bupivacaine
- less potent than racemic bupivacaine
- ADRs rare when it is administered correctly

- Systemic exposure to excessive quantities mainly results in CNS and CVS effects.
- CNS effects usually occur at lower blood plasma concentrations
- CVS effects present at higher concentrations,

Presentation 0.25% Injection: Each ml contains Levobupivacaine Hydrochloride 2.5mg. 0.5% Injection: Each ml contains Levobupivacaine Hydrochloride 5mg

Local Infiltration :

Adults 0.25% Maximum recommended dose 2mg/kg

Local Infiltration : Children < 12 yrs 0.25% 0.25 - 0.50 ml/kg (1.25 -2.5mg/kg)

Safety of ROP and LBUP

- larger doses and blood concentrations of ropivacaine (ROP) and lignocaine will be tolerated better as compared with levobupivacaine (LBUP).
- Lignocaine intoxication results in myocardial depression from which resuscitation is successful but will require continuous drug support.
- After LBUP, or ROP, resuscitation is not always successful, and the administration of epinephrine may lead to severe arrhythmias.