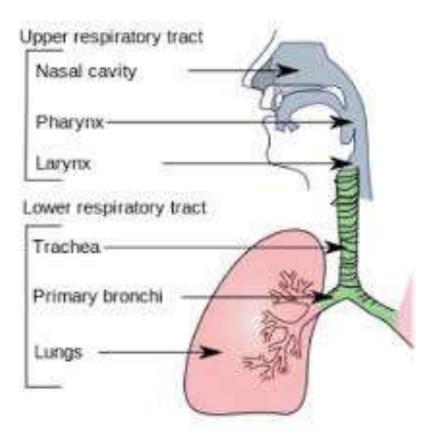
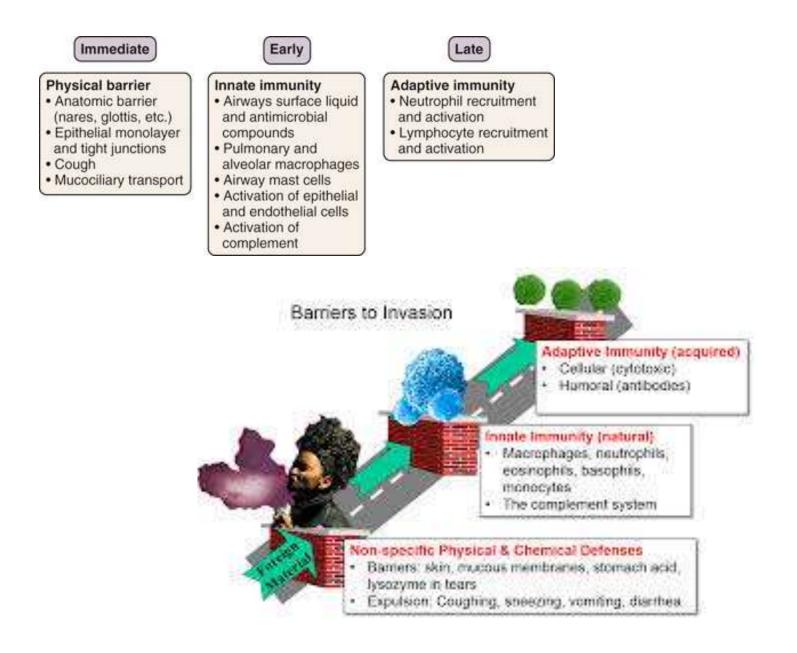

Clinical case

- A 25 year old boy presented with fever for 4 days, cough with expectoration, difficulty in breathing
- On examination his temp. was 101°F, crepitations on the lower parts of chest, tachycardia, tachypnoea
- His sputum was rusty and mucoid in appearance
- Sputum direct microscopy and culture was done
- Provisional diagnosis?

Pneumonia

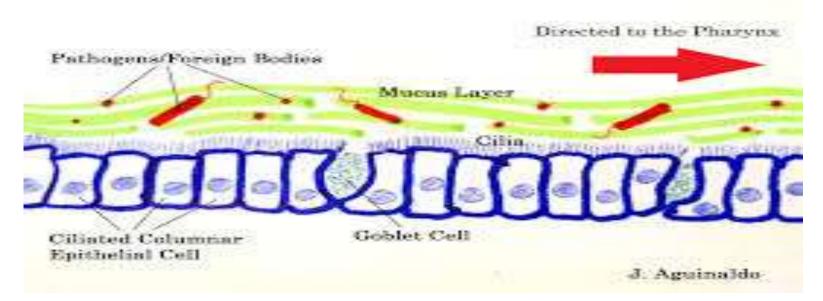

Dr Nikunja K Das Department of Microbiology

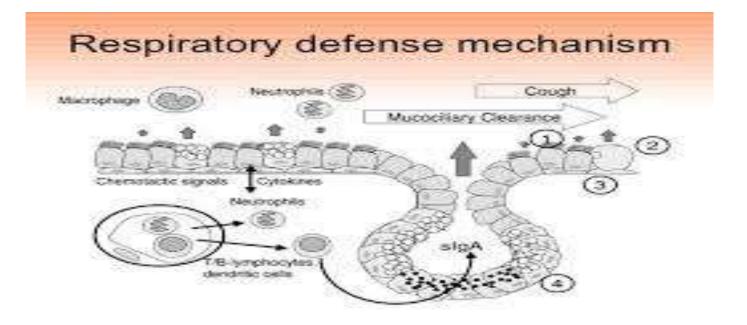

Must know areas

- Lower respiratory tract infections
- Community acquired pneumonia
- Hospital/ Health care/ Ventilator associated pneumonia
- Pathogenesis of pneumonia
- Causative agents of pneumonia
- Laboratory diagnosis of pneumonia

What is a Pneumonia?

- Infection of pulmonary parenchyma
- Major cause of illness and death
- Misdiagnosed, mistreated, underestimated
- Once a microbe has invaded, disease follows
- CAP, HAP, VAP
- New category of Health care associated pneumonia (HCAP)





Defense mechanisms

Hair and turbinates	Large inhaled particles
Branching architecture of tracheobronchial tree	
Muco-ciliary clearance, local antibacterial factors	
Gag reflex, cough mechanism	Aspiration
Normal flora	
Local Macrophages	
Local proteins (Surfactant, protein A)	
TNF, IL-8, GM-CSF	

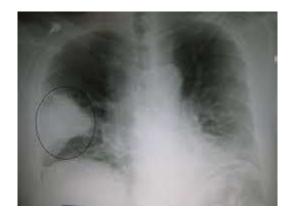
Mucociliary Escalator

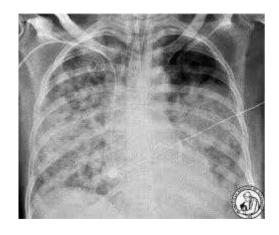
Mechanism	Examples
Aerosols Inhalation	Mycoplasma pneumoniae, Chlamydophila psittaci, Chlamydophila pneumoniae, Legionella pneumophila
Oropharyngeal secretions Aspiration	Streptococcus pneumoniae, Haemophilus influenzae, anaerobes, gram-negative bacilli
Haematogenous spread	Staphylococcus aureus
Reactivation of latent microorganisms	Mycobacterium tuberculosis, Pneumocystis jiroveci

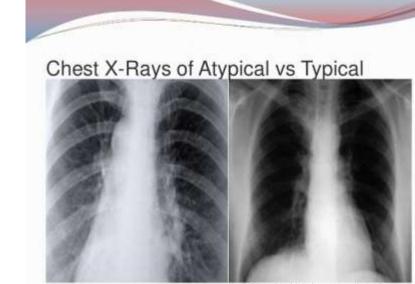
Table 1 : Pathophysiological modes of spread

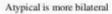
Pathogenesis

- Upper airway colonization/ infection
- By aspiration (small volume)
- By inhalation of airborne droplets
- Seeding of the lungs by blood
- Infection from contiguous area
- Viruses destroy normal epithelium causing superadded bacterial infection

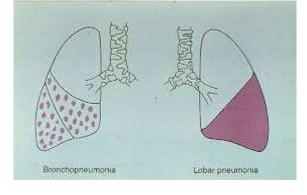

Pathogenesis


- In health care associated pneumonia the environment, and the transfer between the patients and staff or other patients serve as source of pathogens
- Through aspiration, leakage from endotracheal tube
- Biofilms in endotracheal tubes are a source


Pathology


- Edema
- Red hepatization
- Gray hepatization
- Resolution
- Lobar pneumonia
- Respiratory bronchiolitis in VAP
- > Bronchopneumonia in nosocomial pneumonia

Pics of X ray



Strep (typical) is more unilateral

Clinical manifestations

- Fever
- Chills
- Chest pain
- Tachycardia, Tachypnoea
- Cough
- Typical or atypical based on cough productive or not

Causative agent (bacteria)

Common agents	Less common agents
Streptococcus pneumoniae	Serratia
Staphylococcus aureus	Pseudomonas aeruginosa
Haemophilus influenzae	Legionella
Mixed anaerobic infection	Acinetobacter
Bacteroides	Actinomycetes
Fusobacterium	Bacillus
Peptostreptococcus	Moraxella
Peptococcus	Campylobacter
Prevotella	Enterococcus
Enterobacteriaceae	Proteus
E.Coli	Streptococcus pyogenes
Klebsiella pneumoniae	Nocardia
Fatovolovotov	

Causative agents (virus)

Children	Adults
Respiratory syntitial virus	Influenzae A
Parainfluenzae virus 1, 2, 3	Influenzae B
Influenzae A	RSV
Adenovirus types 1, 2, 3, 5	Human metapneumovirus
Influenzae B	Adenovirus 4, 7
Rhinovirus	Rhinovirus
Coxsackie virus	Enterovirus
Echovirus	Echovirus
Measles	Coxsackie
Hantavirus	Epstein-Barr virus
	CMV
	Varicella-zoster, measles, HSV, Corona

Causative agent (Fungus)

Histoplasma capsulatum
Coccidioides immitis
Rhizopus
Absidia
Mucor
Cunninghamella
Aspergillus
Candida

Other agents

Coxiella burnetti	M. abscessus
Rickettsia rickettsiae	M. Avium complex
Mycoplasma pneumoniae	M. Kansasii
Chlamydia psittaci	M. Chelonae
Chlamydia trachomatis	M. Fortuitum
Chlamydia pneumonia	M.Xenopi
Mycobacterium tuberculosis	Ascaris lumbricoides
	Pneumocystis jiroveci
	Strongyloides stercoralis
	Toxoplasma gondii
	Paragonimus westermani

Community acquired pneumonia

- Patients are believed to have acquired the infection outside the hospital setting
- >80% in children are caused by viruses
- <20% in adults

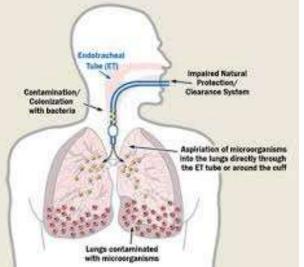
Community acquired pneumonia

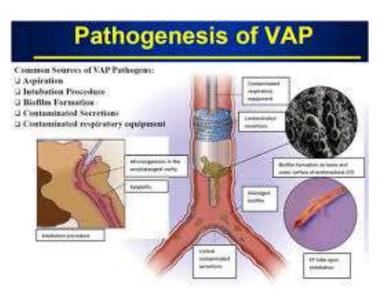
- Neonates- (*C.trachomatis, P.jiroveci*)
- 2 months-5 years (RSV, metapneumo, influenzae)
- Young adults- *M pneumoniae, Chlamydiae, S pneumoniae, H influenzae*

Community acquired pneumonia

Outpatients	Non-ICU	ICU
Streptococcus pneumoniae	S.pneumoniae	S.pneumoniae
M.pneumoniae	M.pneumoniae	S.aureus
H.Influnzae	C.pneumoniae	Legionella spp
C.pneumoniae	H.Influnzae	H.Influnzae
Respiratory viruses	Respiratory viruses	
SARS, Hantavirus, metapneumovirus, coronavirus		
CA-MRSA		
Polymicrobial		Anaerobic infections

Health Care-Associated pneumonia


- Hospitalised within 2 to 90 days
- Persons presenting as outpatients but infected with MDR agents earlier associated with HAP
- Oral antibiotics, IV line, earlier shift of acute illness patients to home, immunomodulatory therapies


Hospital/Ventilator associated pneumonia

- Patients are believed to have acquired the infection within the hospital setting
- Usually at least 2 days following admission

Pic of ventilator

Ventilator associated pneumonia

Early VAP	Late VAP
S pneumoniae	P aeruginosa
H influenzae	MRSA
MSSA	Acinetobacter spp
Enterobacteriaceae	Antibiotic resistant Enterobacteriaceae
E coli	ESBI positive strains
K pneumoniae	К ѕрр
Proteus spp.	Legionella
Enterobacter	Burkholderia cepacia
Serratia	Aspergillus

Etiology as suggested by history

Anthrax	Cattle, goat, swine, hair, wool exposure
Brucellosis	Cattle, goat, pigs; abbatoir worker, unpasteurized milk
Melioidosis	Travel to endemic area
Plague	Bioterrorism, ground squirrel, rabbit
SARS	Outbreak, epidemic region
Hantavirus	Rodent dropping, urine, saliva
Q fever	Exposure to infected goats, cattle, sheep
Legionnaires' disease	Contaminated aerosols
Leptospirosis	Wild rodents, dogs, cats, rats
Psittacosis	Exposure to birds
Tularemia	Rabbits, hares, foxes (skinning)

Atypical pneumonia

- Not caused by traditional organisms, clinical feature is different from classical pneumonia
- Moderate amounts of sputum, no consolidation, mild or no leucocytosis, no alveolar exudate
- Do not respond to lactams, sulphonamides
- Very mild symptoms but consolidation is there and restricted to a smaller area than a lobar pneumonia

Atypical pneumonia

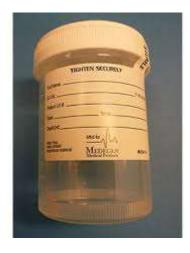
- Mycoplasma pneumoniae
- Legionella pneumophila
- Chlamydiae pneumoniae
- Viruses and protozoa
- Treatment will depend upon the causative agent as the infective agent is atypical

Diagnosis

- Suggested by clinical features derived from clinical history, physical examination, radiographic chest imaging
- Role of laboratory test is to identify the specific etiology although causative agent found in about 50% cases
- Helps the clinician to narrow antibiotic spectrum
- Guide about antibiotic resistance
- May have a pathogen not covered with empirical therapy

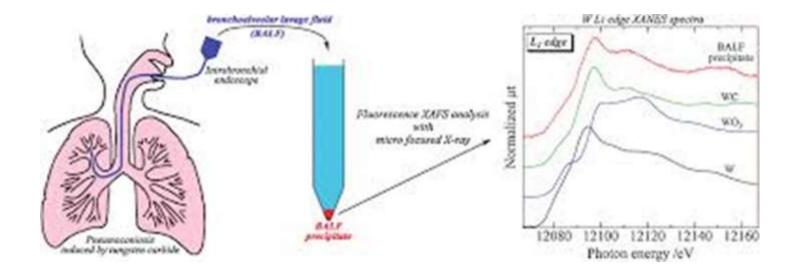
Laboratory diagnosis (specimen collection)

- Bronchoalveolar lavage (BAL)
- Bronchial brush
- Bronchial wash
- **Sputum** (least clinically relevant) as chances of contamination is there but most often taken


Lab diagnosis (specimen collection)

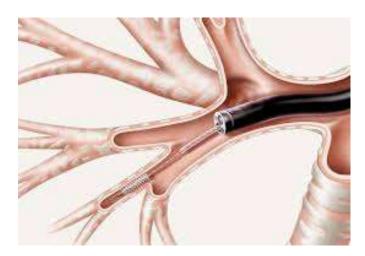
- **Sputum**: Primary mean of determining the cause of bacterial pneumonia
- May be contaminated with saliva
- Expectorated: Deep coughed out specimen, no food 1 2H prior, mouth rinsed with water
- Material collected in clean wide mouth universal container, immediate transport to lab

Specimen collection

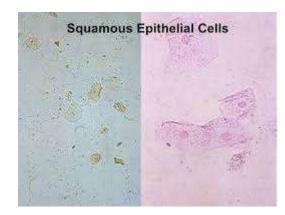

- **Induced:** In patients unable to produce sputum: Postural drainage, thoracic percussion
- Aerosol induced (15% NaCl, 10% glycerin), nebuliser is used, specially useful in *P.jiroveci*
- Gastric aspirate for AFB in children, collected in morning
- Endo-Tracheal aspirate: in patients on ventilators

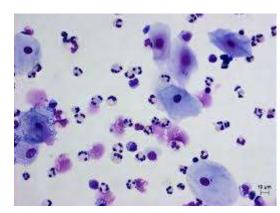
Sample collection

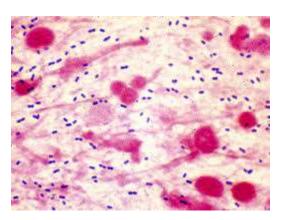
- Bronchoscopy: bronchial mucosa directly visualised and can be taken for biopsy, Broncho Alveolar Lavage, Bronchial Brush, Transbronchial biopsy
- **Transtracheal aspirate**: percutaneous needle is inserted in trachea through cricothyroid membrane
- Thoracocentesis: for patients of empyema
- Thin needle aspiration, Biopsy






Figure 1. Diagnostic thoracocentesis producing purulent pleural fluid


Sample collection


- Collect the sample before any antibiotic therapy
- Early morning specimen
- Transport within 2 hours
- Supplemented with nasopharyngeal aspirate, nose and throat swabs for viruses, mycoplasma

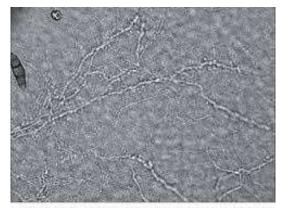
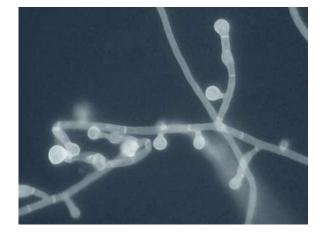
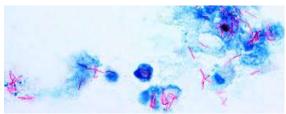
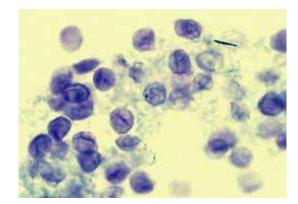
Culture

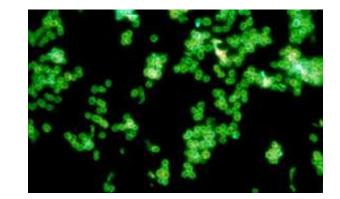
Direct visual examination

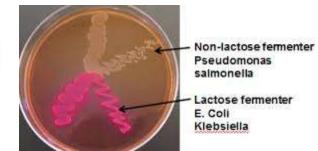
- Direct wet mount for parasite
- 10% KOH for fungal elements, PAS stain
- Calcoflour white with ultraviolet light
- Gram stain for quality of the specimen, bacteria and yeast
- Acceptable specimen has <10 sq epi cells and >25 pus cells/ low field

Direct visual examination

- Acid fast staining
- Auramine-rhodamine stain
- Toluidine O Pneumocystis, Nocardia
- Direct fluorescent antibody staining
- Modified ZN for *Cryptosporidium spp*
- Modified Gomori methenamine stain for *Nocardia, Actinomyces, fungi, parasites*

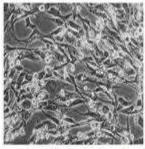






Figure 1: Skin scraping and KOH mount showing branching fungal hyphae in dermatophyte infection



Culture

- According to the suspecting organism
- Blood agar, chocolate agar, MacConkey agar
- Thioglycollate, RCM for anaerobic samples
- Sabourauds dextrose agar
- Lowenstein-Jensen media, BCYE
- Tissue culture/ egg inoculation



Normal BHK 21 cell line

BHK 21 cell line showing CPE

Laboratory diagnosis

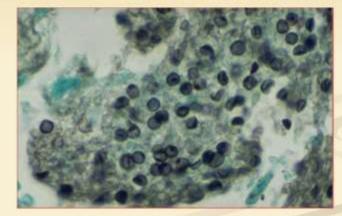
- Blood culture: can be done
- Increases the credibility of the organism isolated from sputum
- Collected at the time of sputum collection
- Before antimicrobial treatment given
- Helps in finding of drug susceptibility tests
- Neutropenia, asplenia, complement def, CLD

Laboratory diagnosis

- Antigen tests: *L.pneumophila I* ags in urine
- Direct fluorescent antigen test for Herpes, CMV, Adenovirus, influenzae virus, RSV, *C trachomatis*
- Pneumococcal antigen test in urine
- Influenzae virus antigen

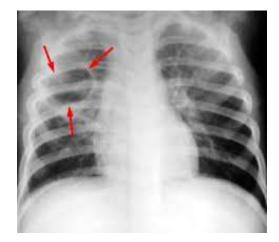
- Polymerase chain reaction:
- L.pneumophila, M.tuberculosis, M.pneumoniae,

C.pneumoniae


- Serology:
- Four-fold rise in specific antibody in paired sera
- Specially useful in atypical pathogens like *Coxiella* burnetti

Other methods

• If diffuse infiltration in immunocompromised patients: *Pneumocystitis carinii: Gomori's*


methanamine silver stain used

Gomori methenamine silver stain at high magnification demonstrates cysts of *Pneumocystis jiroveci* in lung

Potential clues to etiology

- Pneumatocele on chest X-ray : *S.aureus*
- Red currant jelly sputum: *Klebsiella pneumoniae*

- What is a pneumonia?
- What is a community acquired pneumonia
- What are the samples that are needed to be collected in a suspected case of pneumonia
- What are the criteria to reject a sputum sample in a laboratory