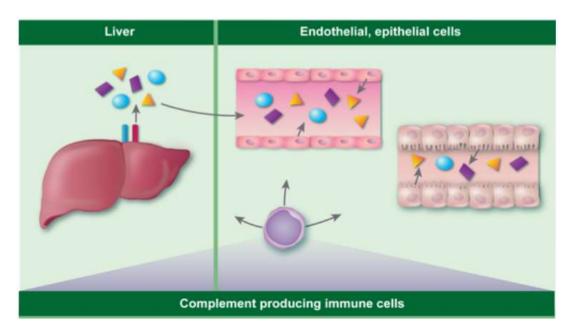
Complement

Mrs. Smita Watwe Assistant Professor Microbiology

At the end of the session, you will be able to understand:

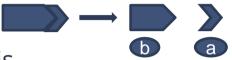
- Definitions
- Complement activation pathway : Classical, alternate, lectin
- Role of complement
- Complement deficiencies

COMPLEMENT


- A group of proteins, normally found in serum in inactive form. In activated form, augment the immune responses.
- Constitute about 5% of normal serum proteins.
- Level does not increase following infection /vaccination.
- Bind to Fc region of antibody
- Not activated by only antigen or only antibody
- Species nonspecific
- Heat labile

Complement Components

- Complement system- about 30 serum proteins
- Complement components, the properdin system and the regulatory proteins.
- Components-named by numerals.
- Nine components- C1 to C9.
- C1 has 3 subunits- C1q, C1r,C1s.
- Properdin system and the regulatory proteins are named by letter symbols, e.g.factor-B



- Liver: major site of synthesis of complement proteins.
- Minor sites: blood monocytes, tissue macrophages, epithelial cells of GIT and genitourinary tract.

Complement Activation

Complement proteins -synthesized in inactive form

- Activated by proteolysis.
- Components have 2 unequal fragments (large & small).
- Larger fragments designated as 'b' (e.g. C3b)
- Smaller fragments designated as 'a' (e.g. C3a).
- Exception -C2a is larger fragment.

Complement Activation (Cont..)

- During proteolysis, smaller fragment is removed, exposing the active site of the larger fragment.
- Larger fragment participates in the cascade reaction of complement pathway
- Smaller fragment diffuses away to mediate other functions.

Complement Activation (Cont..)

- Cascade reaction- Fragments of complements interact in a definite <u>sequential</u> manner with a cascade like effect, which leads to formation of complex.
- Complex having enzymatic activity is designated by putting a bar over the number or symbol

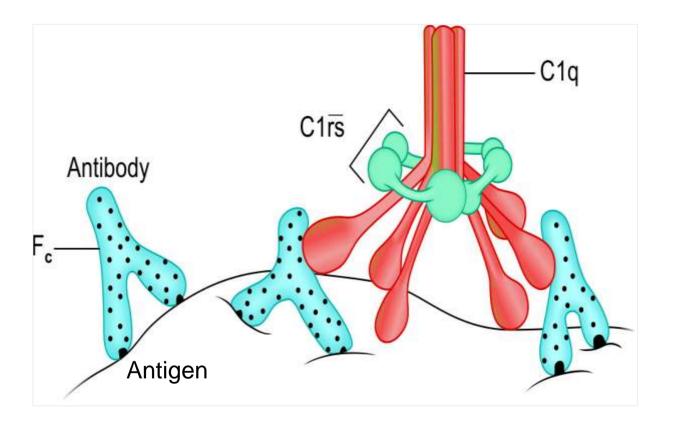
(e.g. C <u>3bBb</u>).

COMPLEMENT PATHWAYS

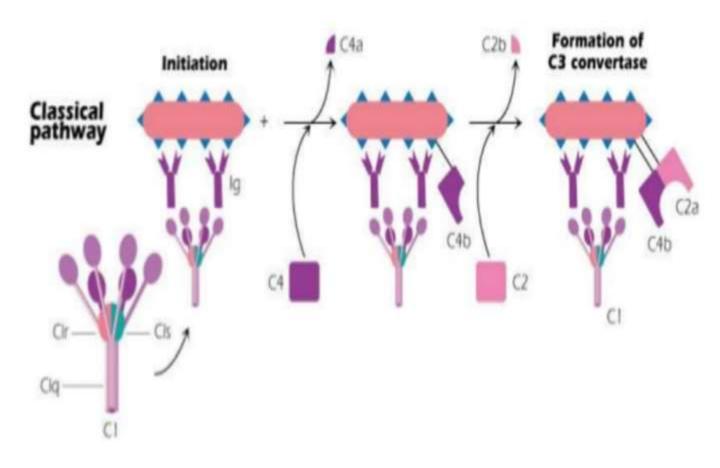
- **1. Classical pathway:** Antibody dependent pathway, triggered by the Ag-Ab complex formation.
- **2. Alternative pathway:** Antibody independent pathway, triggered by the antigen directly.
- **3. Lectin pathway:** Recently described pathway. resembles classical pathway but is antibody independent.

Stages of complement activation

- Four main stages in the activation of any of the complement pathways.
 - Initiation of the pathway
 - Formation of C3 convertase
 - Formation of C5 convertase
 - Formation of membrane attack complex (MAC)
- Three pathways differ from each other only in their initiation till formation of C3 convertase.

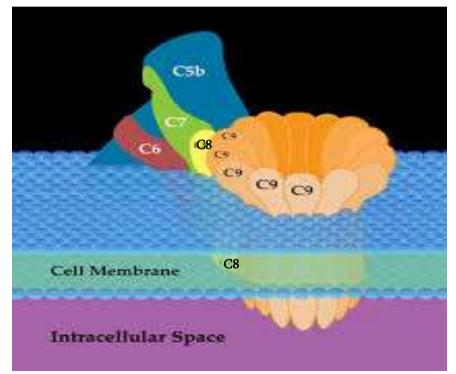

1.Classical Pathway

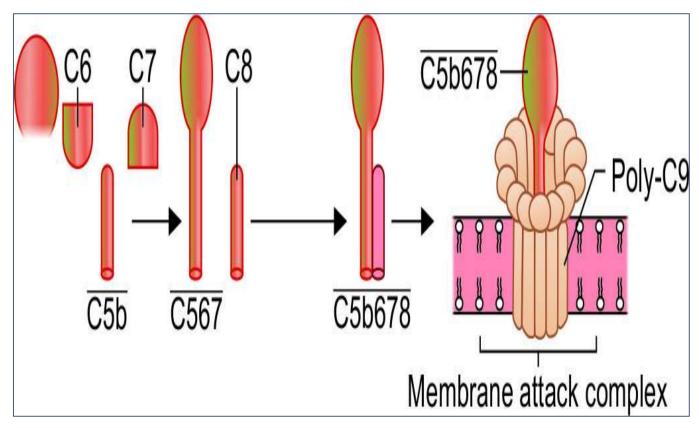
- Antibody dependent
- All Abs can not bind to complement of classical pathway.
- Ability of Abs to fix complement is-

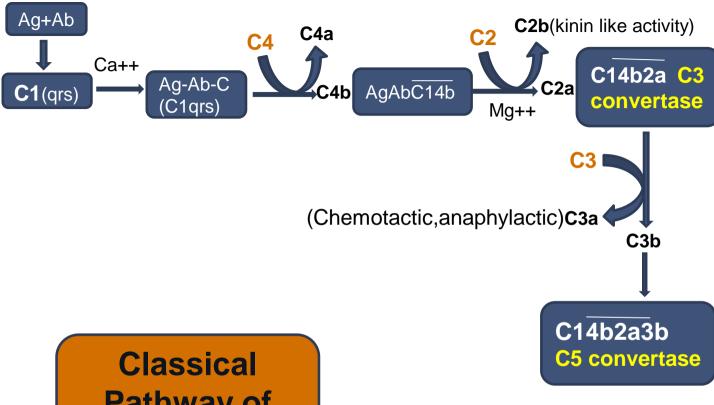

IgM (most potent) > IgG3> IgG1> IgG2.

- Other classes of Abs do not fix complements.
- C_H2 domain on IgG, C_H4 on IgM participate in complement binding.
- The classical pathway begins with activation of C1

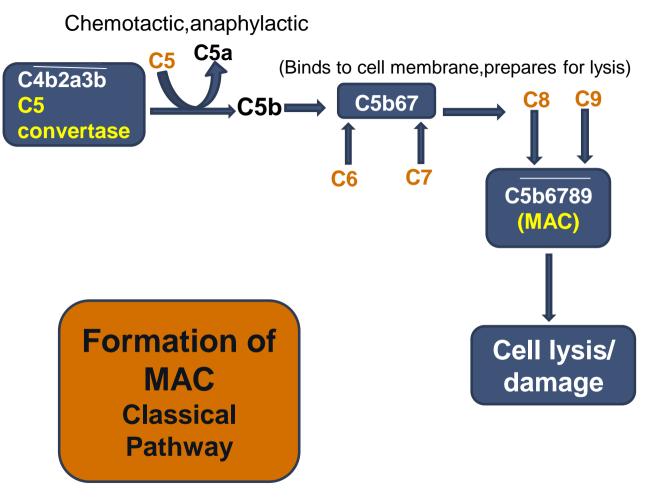
- First step binding of C1 to Ag-Ab complex.
- C1q binds first with Fc portion of IgM /IgG bound to Ag.
- C1q -hexamer(6 globular heads)has 6 combining site.
- Effective activation of classical pathway begins only when
 C1q attaches by at least two of its 6 globular binding sites.
- C1q binding (in the presence of calcium ions)activates sequentially C1r followed by C1s.


- Activated C1s acts as an esterase (C1s esterase)
- It cleaves C4 to produce C4a (an anaphylatoxin) & C4b which binds to C1
- C14b cleaves C2 into C2a (remains linked to C complex), and C2b (has kinin like activity), is released outside.
- C14b2a is referred to as C3 convertase of the classical pathway.


- C3 convertase hydrolyses many C3 molecules into-
 - **C3a** (an anaphylatoxin)
 - C3b remains attached to C14b2a to form C14b2a3b complex which acts as C5 convertase of classical pathway.


- C5 convertase cleaves C5 into C5a (an anaphylatoxin) and
 C5b, continues with the cascade.
 - C5b is extremely labile, gets stabilized by binding with C6 and C7 followed by addition of C8.
 - Hydrophobic regions on C7 and C8 help in penetration into the target cell membrane.
 - Inserted membrane complex (C5b678) binds to C9 molecule

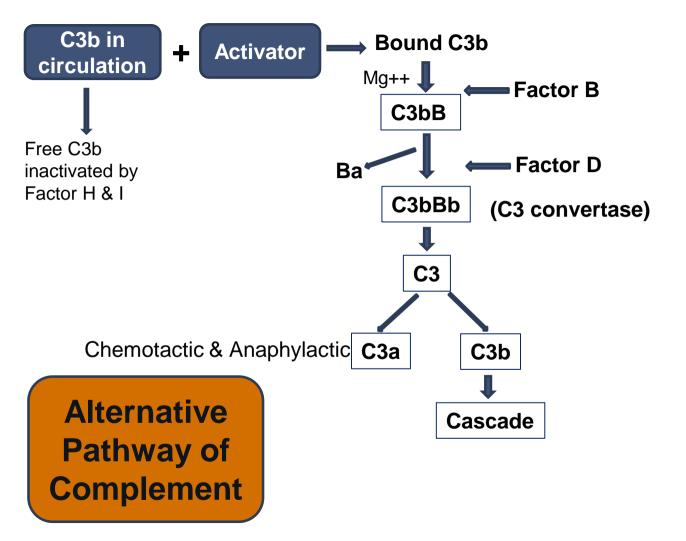
- Penetration of C9 \rightarrow pores (10 nm) on target cell membrane
- Each tubular channel-hydrophobic outside, hydrophilic inside
- Free passage of ions & water \rightarrow cellular swelling or lysis.



- C5b6789 destroys the target cell by MAC.
- Process of cytolysis is 'complement-mediated cytotoxicity'

Pathway of Complement

2. Alternative Pathway


- Independent of antibody; hence a part of innate immunity.
- Four stages.
- Differs from the classical pathway in first two stages.
- Complement components C1, C4 and C2 are not involved.
- Requires three other complement proteins present in serum named factor B, factor D and properdin.

Alternative pathway-Initiation (Cont..)

- First component to be involved is **free C3** in the serum.
- C3 hydrolyzes spontaneously, to generate C3a
 (diffuses out) and C3b (attaches to foreign cell surface antigen).

Formation of C3 Convertase

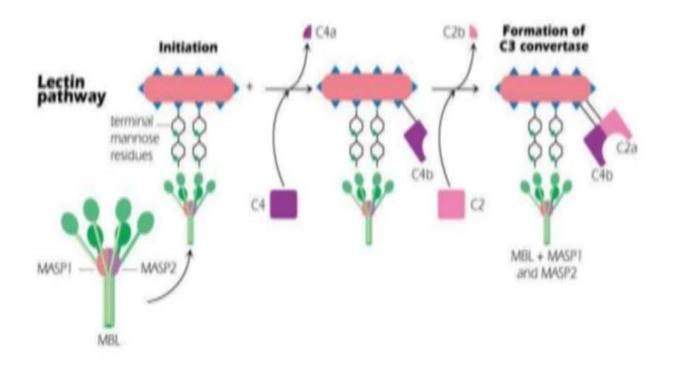
- **Factor B** binds to C3b coated foreign cells.
- Factor D acts on factor B, cleaves it into Ba (diffuses out) and Bb (remains attached).
- C3bBb C3 convertase.
- C3bBb has a very short half-life of 5 minutes.
- Stabilized by **properdin** (half-life is increased to 30 min.)
- C5 convertase & MAC formation-identical to the classical pathway.

Initiators of Alternative pathway		
Antigens from pathogen	Non microbial initiators	
Endotoxin or LPS (lipopolysaccharide) from Gram negative bacteria	Human antibodies in complexes- IgA, IgD	
Teichoic acid from Gram positive bacteria	Tumor cells	
Fungal cells- Yeast cells	Cobra venom factor	
	Heterologous RBCs from mouse, rabbit and chicken	
Parasites like Trypanosomes	Anion polymer like dextran sulphate	
Virus infected cells	Pure carbohydrates like agar, inulin	

3. Lectin Pathway

- Works independent of antibody.
- Mediated through lectin proteins of the host that interact with mannose residues present on microbial surface.
- Lectin pathway involves all complement components used for classical pathways except C1.
- Instead of C1, host lectin protein called mannose
 binding lectins mediate the first 'initiation' stage.

Initiation


- Activation-Mannose carbohydrate residues of glycoproteins on microbial surfaces.
- Mannsoe binding lectins (MBL) bind to mannose residues on microbial surface.
- MBL: an acute phase reactant protein, structurally similar to C1q

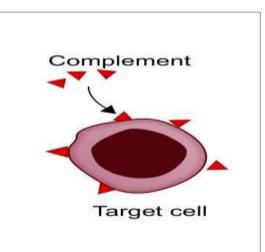
Initiation (Cont..)

- After binding of MBL to microbial surface, another host protein called MASP (MBL Associated Serine Protease) gets complexed with MBL.
- MASP is similar or C1r and C1s and mimics their functions.
- MBL-MASP complex cleaves C4 which in turn splits C2.
- MBL/MASP-C4b2a acts as C3 convertase.

Mannose-binding Lectin

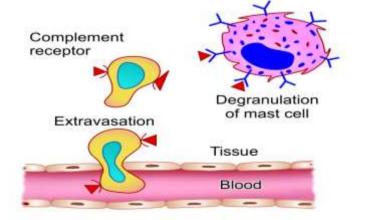
Pathway

Differences between complement pathways

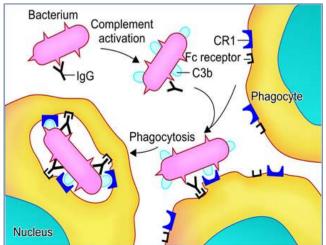

Features	Classical pathway	Alternative pathway	Lectin pathway
Activator (initiator)	Antigen + antibody complex	Endotoxin IgA, IgD, Cobra venom, Nephritic factor	Carbohydrate residue of bacterial cell wall (mannose binding protein) that binds to host lectin antigen.
^{1st} complement activated	C1	C3b	C4
C3 convertase	C14b2a	C3bBb	MBL/MASP-C4b2a
C5 convertase (C3convertase+ 3b)	C14b2a3b	C3bBb3b	MBL/MASP-C4b2a3b
Complement level in the serum	All C1-C9: Low	C1,C4,C2- Normal Others- Low	C1- Normal Others- Low
Immunity	Acquired	Innate	Innate

EFFECTOR FUNCTIONS OF COMPLEMENT

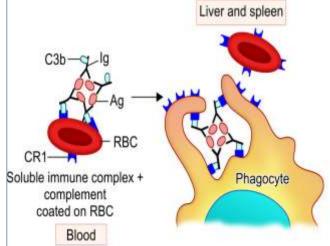
1.Target cell lysis by MAC


- MAC makes pores or channels in target cell membrane.
- Allows free passage of various ions and water into the cell leading to cell swelling, lysis and death.
- e.g. Bacteria, enveloped viruses, damaged cells, tumour cells

etc


2. Inflammatory response

- C3a, C4a and C5a Anaphylatoxins.
- Bind to surface receptors of mast cells, induce their degranulation —release of histamine and other inflammatory mediators.
- Causes vasoconstriction, and increased vascular permeability.


3.Opsonization

- C3b & C4b -major opsonins coat the immune complexes and particulate antigens.
- Phagocytic cells express complement receptors for complement components (C3b, C4b).
- Bind to complement coated antigens & enhance phagocytosis.
- C5a CR1 expression on phagocytes by 10 folds.

4.Removing the immune complexes from blood

- C3b important role.
- C3b bound immune complexes Recognized by complement receptor CR1 present on RBCs.
- Immune complexes bound to RBCs are taken to liver ,spleen where they are phagocytosed after being separated from the RBCs.

5. Viral neutralization

- Complements coated on virus surfaces neutralize the viral infectivity by blocking their attachment sites.
- C3b mediated opsonization of viral particles
- Lysis of the enveloped viruses by:
 - > Activation of classical pathway (most viruses)
 - Alternative or lectin pathways (viruses like Epstein Barr virus, rubella etc)

COMPLEMENT RECEPTORS

- Receptors play an important role in mediating the activities of complement and in their regulation.
- Many complement receptors (CR1 to CR5) distributed on various cell types and bind to specific ligands to mediate specific function.
- e.g. CR2 (present on B cells) is involved in humoral immune response - also acts as receptor for Epstein-Barr virus.

Evasion of complement system by microorganisms			
Mechanisms	Examples		
Shown by Gram negative bacteria			
Long polysaccharide side chain of bacteria can prevent MAC insertion	<i>Escherichia coli Salmonella</i>		
Non covalent interactions between bacterial cell wall components can prevent MAC insertion	Neisseria gonorrhoeae		
Elastases destroy C3a & C5a	Pseudomonas		
Shown by Gram positive bacteria			
Thick peptidoglycan cell wall prevents MAC insertion	<i>Staphylococcus Streptococcus</i>		
Bacterial capsule forms a physical barrier between C3b and CR1 interaction	Streptococcus pneumoniae		

Evasion of complement system by microorganisms.....

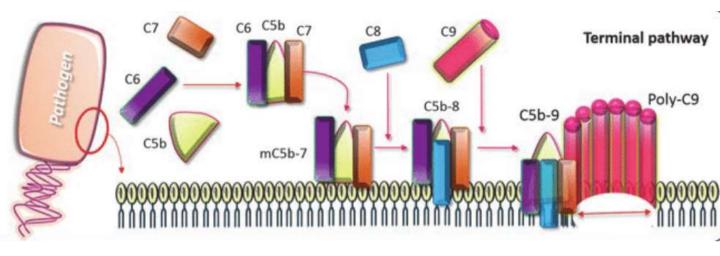
Mechanisms	Examples
Shown by other microbes	
Proteins mimicking complement regulatory proteins	Vaccinia virus, Herpes simplex virus, Epstein-Barr virus, <i>Trypanosoma cruzi</i> , <i>Candida albicans</i>

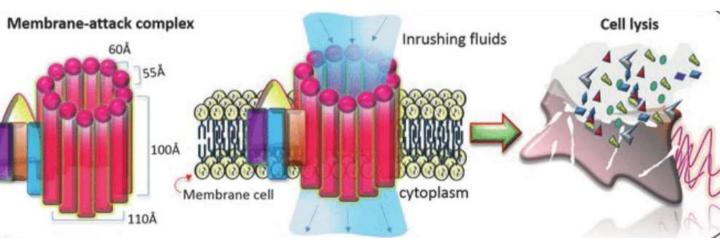
REGULATION OF COMPLEMENT PATHWAYS

- Antigen non-specific.
- Capable of attacking microorganisms as well as host cells.
- Regulatory mechanisms: to restrict complement activity only to the designated target cells.
- Series of regulatory proteins, which inactivate various complement components at different stages.

REGULATION OF COMPLEMENT PATHWAYS (Cont..)

Examples:


- C1 inhibitor (or C1 esterase inhibitor): soluble glycoprotein, inhibits the action of C1q by splitting C1qrs into C1rs and C1q - whole classical pathway is inhibited.
- DAF (Decay accelerating factor):CD55 molecule present on cell membrane, accelerates dissociation of C3 convertase - inhibiting all three pathways.


COMPLEMENT DEFICIENCIES

Complement protein deficiencies	Pathway(s) involved	Disease/pathology
C1, C2, C3, C4	C1, C2,C4-Classical pathway C3- Common deficiency	SLE, glomerulonephritis & pyogenic infections
Properdin, Factor D	Alternative pathway	<i>Neisseria</i> and pyogenic infection
Membrane attack complex (C5-C9)	Common deficiency	Disseminated <i>Neisseria</i> infection

COMPLEMENT DEFICIENCIES (Cont..)

Complement regulatory protein deficiencies	Pathway(s) involved	Disease/pathology
C1 esterase inhibitor	Overactive classical pathway	Hereditary angioneurotic edema
DAF (Decay accelerating factor) & CD59	De-regulated C3 convertase Increased RBC lysis	PNH (Paroxysmal nocturnal hemoglobinurea)

