

# Gram positive, anaerobic, spore forming bacilli

- Pathogens
- Saprophytes
- Industrial impt.- Cl.acetobutylicum

- Cl.perfringens- gas gangrene
- Cl.tetani- tetanus
- Cl.botulinum- food poisoning
- Cl.difficile- antibiotic associated colitis

- × Highly pleomorphic
- × GPB of 3-8 x 0.4-1.2µm in size
- × Long filaments & involution forms- common
- Spores- wider than bacillary body, resembling a spindle (kloster- spindle)
- × Frequency of spore format<sup>N</sup>- vary with diff spp.
- Shape & position of spores vary in diff. spp. helps in identification & classification

## **CLOSTRIDIA-SPORES**

- × Central/ equitoral- spindle shaped bacillus e.g. Cl.bifermentans
- Subterminal- club shaped bacillus e.g. Cl.perfringens/ Cl.welchii
- Val & terminal- bacillus resembles tennis racket e.g. Cl.tertium
- Spherical & terminal- giving drumstick appearance e.g. Cl.tetani

#### × CI. perfringens

Cl. tetani





- × Easily stained, often Gram variable
- × Sensitivity to  $O_2$  varies in diff. spp.
- Provision of sufficient low redox potential (Eh) in the medium is impt. which is achieved by adding reducing substances
- × A small conc. of CO₂ enhance growth
- × Optm temp.- 37°C, optm pH- 7-7.4
- × Slow growth on solid media
- RCM- saccharolytic & proteolytic activities
- × Litmus milk medium- product<sup>N</sup> of acid, clot & gas

- Spores exhibit a pronounced but variable resistance to heat, drying & disinfectants
- Sensitive to metro, peni, chephalo & chloramphenicol; less sensitive to tetra & resistant to aminoglycosides & quinolones
- Toxin mediated inf<sup>N</sup>s, invasive power is limited e.g. botulisum d/t preformed toxin in food, tetanus d/t potent toxin but it is invasive & gas gangrene clostridia are toxigenic & invasive thus spread along the tissues causing septicemia

# **CLASSIFICATION- CLOSTRIDIA**

| Position<br>of spores        | Predominant<br>proteolytic                                        | Predominant<br>saccharolytic                | Proteolytic,<br>but not<br>saccharolytic | Saccharol ytic<br>but not<br>proteolytic |
|------------------------------|-------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|
| Central/<br>sub-<br>terminal | Cl.bifermentans,<br>Cl.botulinum (A,<br>B, F),<br>Cl.histolyticum | CI.perfringens,<br>CI.septicum,<br>CI.novyi |                                          | CI.fallax,<br>CI.botulinum<br>(C,D,E)    |
| Oval/<br>terminal            |                                                                   | CI.defficile                                |                                          | CI.tertium                               |
| Spherical<br>&<br>terminal   |                                                                   |                                             | Cl.tetani                                |                                          |

#### CLOSTRIDIA- PATHOGENIC SPP.

| A. Gas Gangrene Group |                                                       |  |
|-----------------------|-------------------------------------------------------|--|
| Established pathogens | CI. perfringens/ CI.welchii<br>CI. septicum, CI.novyi |  |
| Less pathogenic       | CI. histolyticum, CI.fallax                           |  |
| Doubtful pathogens    | Cl.bifermentans,<br>Cl.sporogenes                     |  |
| B. Tetanus            | Cl. tetani                                            |  |
| C. Food Poisoning     |                                                       |  |
| Gastroenteritis       | CI. perfringens (Type A)                              |  |
| Necrotizing enteritis | Cl. perfringens (Type C)                              |  |
| Botulism              | Cl.botulinum                                          |  |
| D. Acute colitis      | CI. difficile                                         |  |

# CL. PERFRINGES

- × Originally cultivated by Achalme (1891)
- 1<sup>st</sup> described by Welch & Nuttall (1892), isolated from blood & organs of a cadaver
- Impt agent of gas gangrene, also cause food poisoning & necrotitic enteritis
- × Normal habitat- large intestine
- × Spores are found in soil, dust, air

# CL. PERFRINGES- MORPHOLOGY

- Plump, GPB (4-6 x 1 µm) with straight, parallel sides, rounded/ truncated ends, capsulated, non-motile
- Spores are central/ subterminal and rarely seen in artificial culture or in material from pathological lesions
- Absence of spores is the characteristic morphological feature

# CL. PERFRINGES- MORPHOLOGY



Fig. 28.1 (a) and (b) Gram stain and spore stain of *Clostridium perfringens* 



# CL. PERFRINGES CONTD.

- Culture:- anaerobe but can grow under microaerophilic conditions.
- x Temp. 20-50°C, usually @37°C (optm. 45°C)
- × pH- 5.5-8
- Culture media:- RCM- meat turn to pink, no digestion
   Blood agar target hemolysis- double zone of hemolysis
- Stormy fermentation: In litmus milk, fermentation of lactose leads to formation of acid- indicated by the color change of litmus. The acid coagulates the casein & the clotted milk is disrupted due to the vigorous gas production. The paraffin plug is pushed up & shreds of clot are seen sticking to the sides of the tube

## CL. PERFRINGES CONTD.

Biochemical Reactions:L, G, Maltose, S – fermented with product<sup>N</sup> of acid & gas
Indole -ve, MR +Ve,
VP -ve H<sub>2</sub>S +Ve

### CL. PERFRINGENS CONTD.

Destruction of spores:- boiling for 5mins, food poisoning strains (Type A, C) resist boiling for 1-3hrs, autoclaving @ 121°C is lethal Spores resistant to antiseptics & disinfectants

#### CL. PERFRINGENS CONTD.

- Classification- 5 types (A,B,C,D,E) based on toxin production
- Mainly depends on 4 major toxins
- Done by neutralizat<sup>N</sup> by using sp. antitoxin

# VIRULENCE FACTORS

- Toxins- 12 distinct toxins
- 4 are major toxins (α,β,ε & iota)
- Enzymes
- Biologically active soluble substances

#### TOXINS PRODUCED BY CL. PERFRINGENS

- × Major toxins:-
- Alpha toxin:- lethal, dermonecrotic, haemolytic, a phospholipidase (lecithinase C). Lecithinase in presence of Ca++ & Mg++ ions, splits lecithin into phosphoryl cholin & diglyseride which is seen as opalescence in serum or egg yolk agar. This is specifically neutralised by antitoxin. Play role in gas gangrene, wd inf<sup>N</sup>s, septicemia & food poisoning
- II) Beta:- lethal, necrotic. Play role in enteritis
- III) Epsilon:- lethal, necrotic
- IV) Iota:- lethal, necrotic

When Cl.perfringens is grown in a medium containing 6% agar, 5% Fildes peptic digest of sheep blood and 20% human serum with the antitoxin spread on one half of the pate, colonies on the other half without the antitoxin will be surrounded by a zone of opacity. No opacity around colonies with antitoxin d/t neutralisat<sup>N</sup> of  $\alpha$ -toxin- sp lecithinase effect

#### NAGLER'S REACTION



# TOXINS PRODUCED BY CL.PERFRINGENS

#### × Other toxins:-

Gamma-minor lethal action Eta-minor lethal action **Delta- lethal & haemolytic actions** Theta- O<sub>2</sub> labile haemolysin, lethal & cytolytic Kappa- a collagenase Lambda- a proteinase & gelatinase Mu-toxin- a hyaluronidase Nu-toxin- a deoxyribonuclease

#### ENZYME & OTHER SOLUBLE SUBSTANCES

- × Enzymes which destroy the blood gr. substances
- × A neuraminidase
- × A haemagglutinin
- × A haemolysin
- × A fibrinolysin
- × Histamine
- A bursting factor- which has a specific action on muscle tissue, may be responsible for muscle lesions in gas gangrene
- × A circulation factor

# PATHOGENICITY

- Gas gangrene- Cl.perfringens type A
- Food poisoning- Cl.perfringens type A
- Gangrenous appendicitis- Cl.perfringens Type A
- Necerotising enterities- Cl.perfringens Type C
- Biliary tract infections- acute emphysematous cholecystitis, postcholecystectomy septicaemia
- Endogenous gas gangrene of intra- abdominal origin
- **×** Brain abscess & meningitis
- × Panophthalmitis
- × Thoracic infections
- Urogenital infections

### GAS GANGRENE

A rapidly spreading edematous myonecrosis, occuring characteristically in association with severe wounds of excessive muscle masses that have been contaminated with pathogenic clostridia, particularly with Cl.perfringens (Cl.welchii )

# GAS GANGRENE

- Life threatening condition characterized by:
  - 1. Muscle necrosis with edema
  - 2. Sepsis
  - 3. Gas production- usually a mixture of hydrogen, carbon dioxide, nitrogen and oxygen
- Also called Malignant edema/ Anaerobic myositis/ Clostridial myonecrosis
- Can rapidly lead to septicemia, shock and death.
- Mostly follows
  - + Trauma e.g. burns, crush injuries, battle wounds, open fractures, large muscle involvement e.g. thigh
  - + Features relating to the wound e.g. contamination with dirt or sharpnel
  - + Surgeries, Abortion (especially criminal abortion) and Caesarian section
  - + Intramuscular injections

#### GAS GANGRENE CONTD.

- The mere presence of clostridia in wounds does not constitute gas gangrene
- MacLennan described 3 types of anaerobic wound infections:-
- 1) Simple wound contamination with no invasion of underlying tissues
- 2) Anaerobic cellulitis- clostridia invade the fascial planes with minimal toxin production and no invasion of muscle tissues
- 3) Anaerobic myositis/gas gangrene- most serious, clostridial invasion of healthy muscle tissues & abundant formation of exotoxins

### GAS GANGRENE CONTD.

- Low O<sub>2</sub> tension is the most favorable condition for clostridia multiplication. This is achieved ideally in battle wounds, so this is the disease of war
- In civilian life- the disease generally follows road accidents or other type of injury involving crushing of large muscle tissues
- Rarely- follow surgical operations

# PATHOGENESIS

- Organisms enter the tissue by contamination of traumatized area from foreign particle such as soil, dust
- Presence of foreign body and facultative anaerobes- create anaerobic conditions
- Proliferating clostridia release necrotizing toxin & hyaluronidase causing devitalization of adjacent tissues & interfere the blood supply
- × Tissue necrosis, severe toxemia & death
- × Clinical features:-
- Swelling of infected tissue, crepitation in subcutaneous tissue & muscle, foul-smelling discharge, pain, necrosis
- fever, toxemia, shock, death

# PATHOGENESIS OF GAS GANGRENE

- Entry of clostridia (spores) into the wounds along with implanted foreign particles such as soil, road dust, bits of clothing or sharpnel
- Anaerobic/ low oxygen tension environment
- × Germination of spores
- Release of exotoxins (lecithinases, collagenases & hyaluronidases)
- × Extensive tissue damage edema, necrosis
- × Gas production (crepitus)



#### Pathogenesis of Gas gangrene

### **CLINICAL PRESENTATION**

- × Initially no skin changes just pain
- Systemic symptoms e.g. fever, dehydration



- × Once nerves damaged anaesthesia occurs
- × Paralysis
- Skin changes cellulitic progressing to dark purple; develop vesicles and bullae
- × Subcut. air on palpation (may not be present early on)
- × Foul smelling discharge
- × Edema
- × Necrotic or hemorrhagic tissue
- Patients may also present in septicaemic shock with tachycardia, hypotension, fever, stupor



#### Tissue Damage Caused by Microbial Enzymes of Clostridium perfringens



Severe gangrene caused by Clostridium perfringens. Source: Tropical Medicine and Parasitology, 1997

### ANAEROBES LABORATORY DIAGNOSIS



# LABORATORY DIAGNOSIS

#### Sample Collection:-

- Films from the muscles at the edge of the affected area, from the tissue in the necrotic area & from the exudates in the deeper part of the wound
- 2) Exudates from the parts where infection appears to be most active & from the depths of the wound, to be collected with a capillary pipette or a swab
- 3) Necrotic tissue & muscle fragments

# LABORATORY DIAGNOSIS CONTD.

#### × Methods:-

- Bacteriological by Gram stain
   Culture- aerobic & anaerobic
  - Fresh & heated Bl. agar,
- Serum/egg yolk medium- Nagler react<sup>N</sup>
- RCM broth
- Blood culture
- Nagler's reaction- rapid detection of Cl.perfringens in clinical specimens

# LABORATORY DIAGNOSIS CONTD.

Microscopy– scanty pus cells, regularly shaped (box-car shape) gram +ve bacilli with / without spores



# LABORATORY DIAGNOSIS

- × Culture Media
  - Robertson cooked meat medium (RCM)
  - + Media containing reducing substances like unsaturated fatty acids, ascorbic acid, thioglycollic acid, glutathione
- × Culture methods
  - + McIntosh-Fildes'
  - + Gaspak method
  - + Anaerobic Bio-hood
  - + Deep butt culture





Gaspak



#### **McIntosh-Fildes' anaerobic jar**

# LABORATORY DIAGNOSIS

- CulturalCharacteristics
  - RCM Broth meat turns pink (saccharolytic reaction)
  - Litmus milk test/ Stormy fermentation
  - 3. Target Hemolysis





# LABORATORY DIAGNOSIS

#### Detection of Alpha toxin: "Nagler Reaction"



# PROPHYLAXIS & T/T

- Surgery
- Antibiotics broad spectrum

Passive immunisation- anti-gas gangrene
 Sr.(equine polyvalent antitoxin)

### MANAGEMENT OF GAS GANGRENE

- Supportive therapy e.g. analgesia, oxygen, intravenous fluids and good nourishment
- Surgical radical debridement of necrotic tissue (may require amputation if limb involved)
- Antibiotics these do not work alone as they are unable to penetrate the necrotic tissue. Cover gram negative, gram positive and anaerobes e.g. combination of penicillin, gentamicin and metronidazole
- Hyperbaric oxygen therapy kills anaerobic C. perfringens; but efficacy not proven

# CL. DIFFICILE

- K Gram +ve bacilli with large, oval & terminal spores
- Normally present in the gut– 3% of healthy adults, 66% of infants



- × Disease caused -
  - + Pseudomembranous colitis- PMC
  - + Antibiotic associated diarrhoea- AAD
  - + Antibiotic associated colitis- AAC

# PATHOGENESIS OF PMC

- Complication of oral antibiotic therapy
  - + Clindamycin
  - + Lincomycin
  - + Ampicillin
  - + Tetracycline
  - + Chloramphenicol
- Occurs due to alteration in normal gut flora and overgrowth of CI. difficile –
  - + 4-9 days after starting antibiotic therapy
  - + Up to 6 weeks after discontinuation
- Person to person spread spores shed in feces

# **RISK FACTORS**

- × Admission to intensive care unit
- Advanced age >65 years
- Antibiotic therapy (overuse)
- × Prolonged hospital stay
- × Immunosuppressive therapy
- × Multiple and severe underlying diseases
- Recent surgical procedure
- Sharing a hospital room with a difficileinfected patient

#### Pseudo-membranous colitis (PMC)

Virulence factors Enterotoxin - (Toxin A) Cytotoxin - (Toxin B)



Diagnosis Clinical suspicion Culture of feces Detection of toxin Management Discontinue antibiotics-Ampi/Tetra/Clinda Oral metronidazole Oral vancomycin



- × Good personal hygiene
- Bathroom, kitchens & other areas to be cleaned regularly with detergents / disinfectants
- × Isolation of patient with difficile diarrhoea