Molecular Basis Of Neoplasia

Dr. Janice Jaison

PA 7.2

• Describe the molecular basis of cancer

SPECIFIC LEARNING OBJECTIVES

At the end of the session , the II MBBS student shall be able to

- Explain the concept of Monoclonality in tumor cell
- Enumerate the Characteristic features of Malignant cell at Molecular level / Cellular level
- Enumerate types of proto-oncogenes and Discuss the relationship between protooncogenes and oncogenes at cellular level.
- Enumerate common Tumor Suppressor genes.
- Compare and contrast protooncogenes and tumor suppressor genes

- Explain the role of 'DNA Repair Genes' in Cancer.
- Describe role of Telomerase in Cancer
- Enumerate and Discuss Genetic Changes (Karyotypic abnormalities) in Tumor.
- Explain the mechanism of Evasion of Apoptosis by Cancer cell

Molecular basis of Cancer

Non lethal genetic damage lies at the heart of carcinogenesis.

Genetic damage /Mutation

- I .Acquired
 - chemicals
 - radiation
 - viruses

II. Inherited

A tumor is formed by Clonal expansion of a single precursor cell that has incurred the genetic damage.

i.e. Tumors are monoclonal.

Cellular and Molecular Hallmarks of Cancer

EIGHT fundamental changes that determine malignant phenotype.

- I. Self sufficiency in growth signals
- II. Insensitivity to growth inhibitory signals
- III. Altered cellular metabolism (Warburg effect)
- IV. Evasion of apoptosis
- V. Limitless replicative potential
- VI. Sustained angiogenesis
- VII. Ability to invade & metastasize
- VIII. Ability to evade the host immune response

Principle targets of Genetic damage

- Four classes of normal regulatory genes
- I. Growth promoting **proto oncogenes**
- II. Growth inhibiting suppresor genes
- III. Genes that regulate programmed cell

 $death-{\bf Apoptosis}$

IV. Genes involved in DNA repair

- **Proto-oncogenes**: normal cellular genes whose products promote cell proliferation
- Oncogenes are mutated genes that cause excessive cell growth, even in the absence of growth factors and other growth promoting external cue
- **Oncoproteins**: a protein encoded by an oncogene that drives increased cancer cell proliferation

Proteins encoded by proto-oncogenes may function as

- growth factors
- growth factor receptors
- > proteins involved in signal transduction
- nuclear regulatory proteins
- \succ cell cycle receptors

Mechanisms of activation of c-oncs

I. Point mutations & Deletion

Ras proto-oncogene undergoes point mutation & is associated with colon,lung & pancreatic tumors.

II. Chromosomal Translocation

translocation of c-myc proto-oncogene from its site on chromosome 8 to a portion on chromosome 14, seen in 75% cases of Burkitt's Lymphoma

III. Gene Amplification

amplification of N-myc gene in human neuroblastoma

Туре	Proto	Mode of activation	Tumors
	oncogene		
Growth factors			
PDGF B chain	SIS	Overexpression	Astrocytoma
			Osteosarcoma
Growth factor receptor			
EGF family	ERB-B1	Overexpression	SCC of Lung
	ERB-B2	Amplification	Ca Breast & Ca
			Ovary
Proteins in signal transduction			
GTP binding	K-RAS	Point mutation	Colon, lung, pancreatic tumors

Туре	Proto- oncogene	Mode of activation	Tumors	
Nuclear regulatory				
Proteins Transcriptional activators	C-myc	Translocation	Burkitt's Lymphoma	
Cell cycle regulators				
Cyclins	Cyclin D	Translocation	Mantle Cell Lymphoma	19

Tumor suppressor genes/ Anti-oncogenes

- Pair of genes which perform the physiologic function of regulation of cell growth
- Apply breaks to cell proliferation.
- Deletion or mutation of antioncogenes result in removal of brakes, inhibitory effect to cell growth is gone.
 - Rb gene Retinoblastoma
 - P53 Ca lung,Ca colon,

Others i) APC gene – Familial Adenomatous Polyposis Coli gatekeeper gene ii) WT1 gene – Hereditary Wilms Tumor iii) NF 1gene – Neurofibromatous type I BRCA 1& BRCA 2 genes – Breast cancer iv)

RETINOBLASTOMA- RB GENE

- **Knudson Two Hit hypothesis of oncogenesis** In Hereditary cases – one genetic damage(1st hit)
 - is inherited from an affected parent & is therefore present in all somatic cells of the body.
 - Whereas the 2nd mutation (2nd hit) occurs in one of the many retinal cells.(which already carry the 1st mutation).
- In Sporadic cases both hits occur somatically within a single retinal cells,whose progeny then form the tumor.

• Both normal alleles of the RB locus must be inactivated for the development of Retinoblastoma.

 Patients with familial Retinoblastoma are also at greatly increased risk of developing Osteosarcoma & some other soft tissue sarcomas.

P 53- MOLECULAR POLICEMAN

Ionizing radiation/carcinogens/mutagen \rightarrow Normal p53 \rightarrow DNA damage \rightarrow G1 arrest \rightarrow Successful repair \rightarrow Normal cell Ionizing radiation/carcinogens/mutagen \rightarrow Loss of p53 \rightarrow DNA damage \rightarrow DNA repair \rightarrow repair fails →Apoptosis **Guardian of genome**

ONCOGENES

- Mutated form of normal proto-oncogene
- Dominant: mutation of a single copy may transform cell
- Point mutation, translocation, amplification, overexpression
- Allows cell proliferation by increased growth promotion pathways
- Level of action-cell surface, cytoplasm, nucleus

TUMOR SUPPRESSOR GENES

- Mutated form of normal growth suppressor genes
- Recessive: mutation of both alleles required for transformation
- Deletion, point mutation, loss of function
- Allows cell proliferation by removal of brakes in cell proliferation
- Level of action-cell surface, cytoplasm, nucleus

Oncogenes	Tumor Suppressor Genes
Mutation in one of the two alleles is sufficient	Both alleles must be affected
Gain of function of a protein that signals cell division	Loss of function of a protein
Mutation arises in somatic cells, not inherited	Mutation present in germ cell (can be inherited), or in somatic cell
Some tissue preference	Often strong tissue preference (eg effect of <i>RB</i> gene in the retina)

Data from Levine AJ: The p53 tumor suppressor gene. N Engl J Med 1992;326:1350.

DNA repair genes

- \checkmark Ionizing radiation, sunlight, dietary carcinogens
- $\checkmark\,$ ROS generated by cell metabolism
- Errors occuring spontenously during DNA replication.
- ✓ Those born with inherited mutations of DNA repair proteins are at a greatly increased risk of developing cancer → Genomic instability syndrome

Genomic instability occurs when both copies of these genes are lost.

Defects in DNA repair System

- a) Mismatch repair spell checkers/proof readers: HNPCC syndrome
- b) Nucleotide excision repair UV rays cause
 cross linkage of pyrimidine residues
 :Xeroderma Pigmentosum
- c) Recombination repair Fanconi's anaemia Bloom syndrome Ataxia telangiactasia

TELOMERASE IN CANCER

Telomerase – maintains normal telomere length.

- After fixed no. of divisions telomeres are lost & the cells cease to undergo mitosis.
- Cancer cells have upregulated telomerase, maintaining telomere length.

Genes that regulate Apoptosis

Mutations in the genes that regulate apoptosis. bcl-2 → protects cells from apoptosis i.e. anti- apoptotic

Mutations in bcl - 2 \rightarrow overexpression of bcl-2, increase in the lifespan of cells, causing B cell lymphoma.

The Warburg Effect

- Even in the presence of ample oxygen, cancer cells demonstrated a distinctive form of cellular metabolism characterized by high levels of glucose uptake and increased conversion of glucose to lactose (fermentation)via the glycolytic pathway
- Aerobic glycolysis
- Otto Warburg received Nobel prize in 1931

PET scan- Positron Emission Tomography "glucose hunger" is used to visualize tumors via PET scanning, in which patients are injected with "F –fluorodeoxyglucose, a non metabolizable derivative of glucose that

is preferentially taken up into tumor cells (as well as normal actively dividing tissues such as the bone marrow)

• Most tumors are PET positive and rapidly growing ones are markedly so

Development of sustained angiogenesis

✓ Tumors stimulate angiogenesis.

 ✓ Angiogenesis – supplies nutrient & o₂ secretes growth factors

✓ Angiogenesis requisite for tumor growth & metastasis.

Carcinogenesis is a multistep process at both phenotypic & genetic levels

tumor progression

Changed chromosome 9

The abnormality seen by Nowell & Hungerford on chromosome 22, Now known as the Philadelphia Chromosome.

LSI BCR/ ABL Dual Color, Dual Fusion Probe

LSI ABL (9q34) LSI BCR (22q11.2)

fusion

abnormal

normal