MEMBRANE POTENTIAL

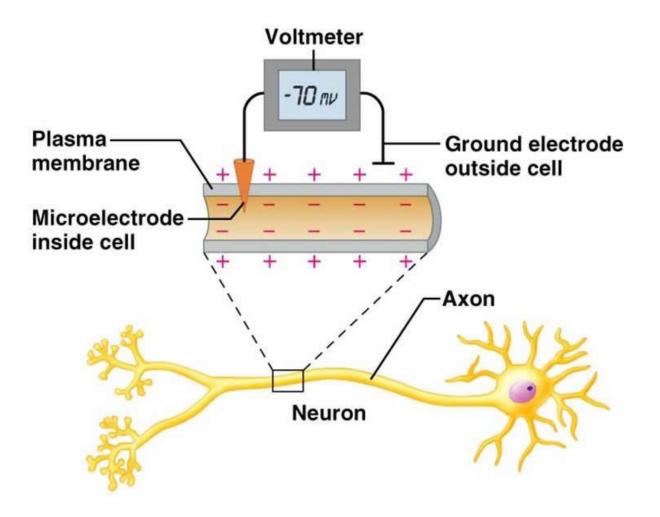
Dr. Deepa Nair

MEMBRANE POTENTIAL

- Electrical potential which exists across cell membrane
- Types
 - Resting Membrane Potential
 - Action potential
 - Electrotonic potential

RESTING MEMBRANE POTENTIAL

- Membrane potential which exists across the cell membrane under resting condition with inside of the cell negatively charged with respect to outside
- By convention ECF is assigned a voltage of zero and the polarity (positive or negative) of the membrane potential is stated in terms of excess charge on inside of the cell


RESTING MEMBRANE POTENTIAL

• Magnitude varies in different cells

• RMP of neuron -70mV

 ie, ICF has an excess of negative charge and the potential difference across the membrane has a magnitude of 70mV

RESTING MEMBRANE POTENTIAL

FACTORS CONTRIBUTING TO RMP

- 2 Major factors
- Selective permeability of cell membrane & and diffusion of ion across the membrane, along the concentration gradient.

• 2. Sodium Potassium ATPase pump

SELECTIVE PERMEABILITY OF MEMBRANE

- Diffusion of ions along the concentration gradient
- Gibbs- Donnan Membrane Equilibrium
- Nernst Equation
- Goldmann Constant Field Equation

How concentration gradient creates membrane potential?

INSIDE	OUTSIDE
Κ	

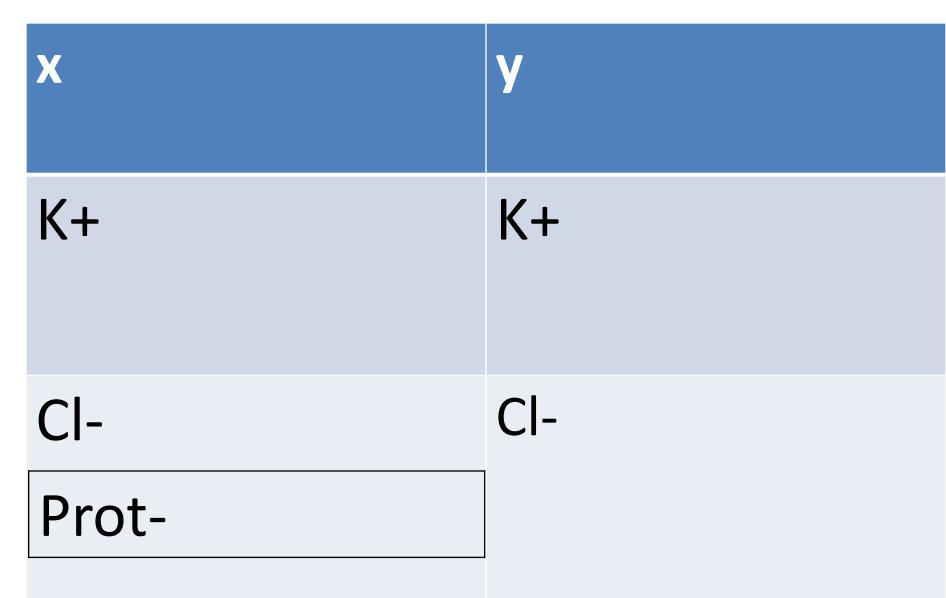
DISTRIBUTION OF MAJOR IONS ACROSS PLASMA MEMBRANE

Ion	Concentration (mM)	
Ion	Inside	Outside
Na ⁺	15	150
K*	150	5.5
Cl	9	125

MAGNITUDE OF RMP

- Determined by
- 1. Difference in specific ionic conc. in ECF & ICF
- 2. Difference in membrane permeability to different ions

GIBBS- DONNAN EQUILIBRIUM


- Explain how uneven distribution of ions is maintained under resting condition
- Gives conc. of various ions and substance across semi permeable membrane

GIBBS- DONNAN EQUILIBRIUM

• When there is an ion on one side of the membrane that cannot diffuse through the membrane, the distribution of ions to which membrane is affected in a predictable way

• For e.g., the negative charge of a non diffusible anion hinders diffusion of diffusible cation & favors diffusion of diffusible anion

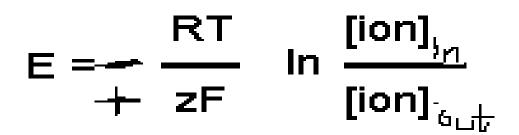
GIBBS- DONNAN EQUILIBRIUM

$[K^{+}Y] + [CI^{-}Y]$ $[K^{+}x] = [CI^{-}Y]$ $[K^{+}Y] = [CI^{-}X]$

- [K⁺ x]+ [Cl⁻X]+ [Prot- X]>
- [K⁺ x]> [K⁺Y]

GIBBS- DONNAN EQUILIBRIUM

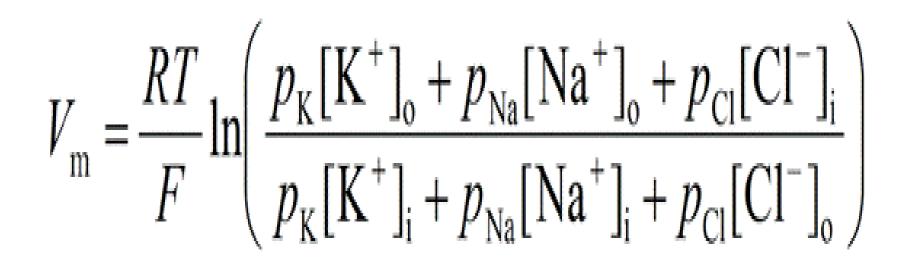
• [K⁺ x]


How concentration difference produce membrane potentials?

Inside	outside
Κ	k
Na	Na

NERNST POTENTIAL

- Diffusion potential level across a membrane that exactly opposes the net diffusion of a particular ion through the membrane is called Nernst potential
- Equilibrium potential for any ion that is, electrical potential necessary to balance a given ion concentrations gradient across a membrane so that net flux of ion is zero


NERNST POTENTIAL Nernst equation

for a monovalent 1 ion at 37°C

E =---61.5 log
$$\frac{[ion]_{|\Pi|}}{[ion]_{G_{U}}}$$

GOLDMAN – KATZ EQUATION

